# Note about the linear complexity of new generalized cyclotomic binary sequences of period $2 p^{n}$ 

VLADIMIR EDEMSKIY<br>Novgorod State University<br>Department of Applied Mathematics and Informatics<br>ul. B. St. Petersburgskaya, 41 173003, Veliky Novgorod<br>RUSSIA<br>Vladimir.Edemskiy@novsu.ru


#### Abstract

This paper examines the linear complexity of new generalized cyclotomic binary sequences of period $2 p^{n}$ recently proposed by Yi Ouang et al. (arXiv:1808.08019v1 [cs.IT] 24 Aug 2018). We generalize results obtained by them and discuss author's conjecture of this paper.


Key-Words: Binary sequences, linear complexity, cyclotomy

## 1 Introduction

The cyclotomic classes and the generalized cyclotomic classes are often used for design sequences with high linear complexity, which is an important characteristic of sequence for the cryptography applications [2]. Recently, new generalized cyclotomic classes were presented in [8]. The linear complexity of new generalized cyclotomic binary sequences with period $p^{n}$ was studied in [9, 4, 7]. A new family of binary sequences with period $2 p^{n}$ based on the generalized cyclotomic classes from [8] was presented in [6]. Yi Ouang et al. examined the linear complexity of these sequences for $f=2^{r}$, where $p=1+e f$ and $r$ is a positive integer. They offered new studying method of the linear complexity of these sequences. Their method based on ideas from [4].

In this paper we show that for study of the linear complexity of new sequence family from [6] we can use only old the method from [4]. Furthermore, it will be enough for obtaining more generalized results than in [6] and for the proof and the correction of the conjecture of the authors of this paper. Here we keep the notation and the structure of [4], i.e., in Sect. 2 we introduce some basics and recall the definition of a generalized cyclotomic sequence and the conjecture from [6]. Section 3 is dedicated to the study of the linear complexity of this family of cyclotomic sequences. Section 4 concludes the work in this paper.

We will study the linear complexity of new sequence family from [6] when $p$ is not a Wieferich prime, i.e. $2^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$. It was shown that there are only two such primes, 1093 and 3511 , up to $6 \times 10^{17}[1,3]$.

## 2 Preliminaries

Throughout this paper, we will denote by $\mathbb{Z}_{N}$ the ring of integers modulo $N$ for a positive integer $N$, and by $\mathbb{Z}_{N}^{*}$ the multiplicative group of $\mathbb{Z}_{N}$.

First of all we will recall some basics of the linear complexity of a periodic sequence and introduce the generalized cyclotomic sequences proposed in [6].

### 2.1 Linear Complexity

Let $s^{\infty}=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ be a binary sequence of period $N$ and $S(x)=s_{0}+s_{1} x+\cdots+s_{N-1} x^{N-1}$. It is well known (see, for instance, [2, Page 171]) that the linear complexity of $s^{\infty}$ is given by

$$
L\left(s^{\infty}\right)=N-\operatorname{deg}\left(\operatorname{gcd}\left(x^{N}-1, S(x)\right)\right)
$$

So, if $N=2 p^{n}$ then we see that

$$
L\left(s^{\infty}\right)=2 p^{n}-\operatorname{deg}\left(\operatorname{gcd}\left(\left(x^{p^{n}}-1\right)^{2}, S(x)\right)\right)
$$

Thus, if $\alpha_{n}$ is a primitive root of order $p^{n}$ of unity in the extension of the field $\mathbb{F}_{2}$ (the finite field of two elements) then in order to find the linear complexity of a sequence it is sufficient to find the zeros of $S(x)$ in the set $\left\{\alpha_{n}^{i}, i=0,1, \ldots, p^{n}-1\right\}$ and determine their multiplicity.

### 2.2 New Generalized Cyclotomic Sequences Length $2 p^{n}$

Let $p$ be an odd prime and $p=e f+1$, where $e, f$ are positive integers. Let $g$ be a primitive root modulo
$p^{n}$. It is well known [5] that an odd number from $g$ or $g+p^{n}$ is also a primitive root modulo $2 p^{j}$ for each integer $j \geq 1$. Hence, we can assume that $g$ is an odd number. Further, the order of $g$ modulo $2 p^{j}$ is equal to $\varphi\left(2 p^{j}\right)=p^{j-1}(p-1)$, where $\varphi(\cdot)$ is the Euler's totient function. Below we recall the definitions of generalized cyclotomic classes introduced in [8] and [6].

Let $n$ be a positive integer. For $j=1,2, \cdots, n$, denote $d_{j}=p^{j-1} f$ and define

$$
\begin{gather*}
D_{0}^{\left(p^{j}\right)}=\left\{g^{t \cdot d_{j}}\left(\bmod p^{j}\right) \mid 0 \leq t<e\right\}, \text { and } \\
D_{i}^{\left(p^{j}\right)}=g^{i} D_{0}^{\left(p^{j}\right)}=\left\{g^{i} x\left(\bmod p^{j}\right): x \in D_{0}^{\left(p^{j}\right)}\right\}, \\
1 \leq i<d_{j}, \\
D_{0}^{\left(2 p^{j}\right)}=\left\{g^{t \cdot d_{j}}\left(\bmod 2 p^{j}\right) \mid 0 \leq t<e\right\}, \text { and } \\
D_{i}^{\left(2 p^{j}\right)}=g^{i} D_{0}^{\left(p^{j}\right)}=\left\{g^{i} x\left(\bmod 2 p^{j}\right): x \in D_{0}^{\left(2 p^{j}\right)}\right\}, \\
1 \leq i<d_{j} . \tag{1}
\end{gather*}
$$

The cosets $D_{i}^{\left(p^{j}\right)}, i=0,1, \cdots, d_{j}-1$, are called generalized cyclotomic classes of order $d_{j}$ with respect to $p^{j}$. It was shown in [8] that $\left\{D_{0}^{\left(p^{j}\right)}, D_{1}^{\left(p^{j}\right)}, \ldots, D_{d_{j}-1}^{\left(p^{j}\right)}\right\}$ forms a partition of $\mathbb{Z}_{p^{j}}^{*}$ for each integer $j \geq 1$ and for an integer $m \geq 1$. Also $\left\{D_{0}^{\left(2 p^{j}\right)}, D_{1}^{\left(2 p^{j}\right)}, \ldots, D_{d_{j}-1}^{\left(2 p^{j}\right)}\right\}$ forms a partition of $\mathbb{Z}_{2 p^{j}}^{*}$ for each integer $j \geq 1$ and for an integer $m \geq 1$.

Let $f$ be a positive even integer and $b$ an integer with $0 \leq b<p^{n-1} f$. Define four sets

$$
\begin{aligned}
& \mathcal{C}_{0}^{\left(2 p^{n}\right)}=\bigcup_{j=1}^{n} \bigcup_{i=d_{j} / 2}^{d_{j}-1} p^{n-j}\left(D_{(i+b)}^{\left(2 p^{j}\right)} \quad\left(\bmod d_{j}\right)\right. \\
& \left.\cup 2 D_{(i+b)}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)\right) \cup\left\{p^{n}\right\}, \text { and } \\
& \mathcal{C}_{1}^{\left(2 p^{n}\right)}=\bigcup_{j=1}^{n} \bigcup_{i=0}^{d_{j} / 2-1} p^{n-j}\left(D_{(i+b)}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)\right. \\
& \left.\cup 2 D_{(i+b)}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)\right) \cup\{0\}, \\
& \widetilde{\mathcal{C}}_{0}^{\left(2 p^{n}\right)}=\bigcup_{j=1}^{n} p^{n-j}\left(\bigcup_{i=0}^{d_{j} / 2-1} 2 D_{(i+b)}^{\left(2 p^{j}\right)} \quad\left(\bmod d_{j}\right)\right. \\
& \left.\cup \bigcup_{i=d_{j} / 2}^{d_{j}-1} D_{(i+b)}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)\right) \cup\left\{p^{n}\right\}, \text { and }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\widetilde{\mathcal{C}}_{1}^{\left(2 p^{n}\right)}= & \bigcup_{j=1}^{n} p^{n-j}\left(\bigcup_{i=0}^{d_{j} / 2-1} D_{(i+b)}^{\left(2 p^{j}\right)} \quad\left(\bmod d_{j}\right)\right. \\
& \cup \bigcup_{i=d_{j} / 2}^{d_{j}-1} 2 D_{(i+b)}^{\left(2 p^{j}\right)} \quad\left(\bmod d_{j}\right) \tag{2}
\end{array}\right) \cup\{0\} .
$$

It is obvious that $\mathbb{Z}_{2 p^{n}}=\mathcal{C}_{0}^{\left(2 p^{n}\right)} \cup \mathcal{C}_{1}^{\left(2 p^{n}\right)}=\widetilde{\mathcal{C}}_{0}^{\left(2 p^{n}\right)} \cup$ $\widetilde{\mathcal{C}}_{1}^{\left(2 p^{n}\right)}$ and $\left|\mathcal{C}_{i}^{\left(2 p^{n}\right)}\right|=\left|\tilde{\mathcal{C}}_{i}^{\left(2 p^{n}\right)}\right|=p^{n}, \quad i=$ 0,1 . Families of balanced binary sequences $s^{\infty}=$ $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ and $\tilde{s}^{\infty}=\left(\tilde{s}_{0}, \tilde{s}_{1}, \tilde{s}_{2}, \ldots\right)$ of period $p^{n}$ can thus be defined as in [6], i.e.,

$$
s_{i}= \begin{cases}0, & \text { if } i\left(\bmod p^{n}\right) \in \mathcal{C}_{0}^{\left(2 p^{n}\right)}  \tag{3}\\ 1, & \text { if } i\left(\bmod p^{n}\right) \in \mathcal{C}_{1}^{\left(2 p^{n}\right)}\end{cases}
$$

and

$$
\tilde{s}_{i}= \begin{cases}0, & \text { if } i\left(\bmod p^{n}\right) \in \widetilde{\mathcal{C}}_{0}^{\left(2 p^{n}\right)}  \tag{4}\\ 1, & \text { if } i\left(\bmod p^{n}\right) \in \widetilde{\mathcal{C}}_{1}^{\left(2 p^{n}\right)}\end{cases}
$$

In the case of $f=2^{r}$, the linear complexity of $s^{\infty}, \tilde{s}^{\infty}$ was estimated in [6], where a conjecture about the linear complexity of these sequences was also made as follows.

Conjecture. (1) If $2^{e} \equiv-1(\bmod p)$ but $2^{e} \not \equiv$ $-1\left(\bmod p^{2}\right)$, then the linear complexity $L\left(s^{\infty}\right)=$ $2 p^{n}-(p-1)$.
(2) If $2^{e} \equiv 1(\bmod p)$ but $2^{e} \not \equiv 1\left(\bmod p^{2}\right)$, then the linear complexity $L\left(\tilde{s}^{\infty}\right)=2 p^{n}-(p-1)-e$.

### 2.3 Main Result

This subsection will study the linear complexity of $s^{\infty}, \tilde{s}^{\infty}$ in (3) and (4) for some even integers $f$. The main result in this paper is given as follows.

Theorem 1 Let $p=e f+1$ be an odd prime with $2^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$ and $f$ is an even positive integer. Let $\operatorname{ord}_{p}(2)$ denote the order of 2 modulo $p$ and $v=$ $\operatorname{gcd}\left(\frac{p-1}{\operatorname{ord}_{p}(2)}, f\right)$.
(i) Let $s^{\infty}$ be a generalized cyclotomic binary sequence of period $p^{n}$ defined in (3). Then the linear complexity of $s^{\infty}$ is given by

$$
L\left(s^{\infty}\right)=2 p^{n}-r \cdot \operatorname{ord}_{p}(2)
$$

where $0 \leq r \leq \frac{p-1}{\operatorname{ord}_{p}(2)}$.

## Furthermore, the linear complexity

$L\left(s^{\infty}\right)= \begin{cases}2 p^{n}-p+1, & \text { if } v=f / 2 \\ 2 p^{n}, & \text { if } v=1 \text { or } 2 v \left\lvert\, \frac{f}{2}\right., \text { or } f=v .\end{cases}$
(ii) Let $\tilde{s}^{\infty}$ be a generalized cyclotomic binary sequence of period $p^{n}$ defined in (4). Then for the linear complexity of $\widetilde{s}^{\infty}$ we have

$$
2 p^{n}-2 r \cdot \operatorname{ord}_{p}(2) \leq L\left(\widetilde{s}^{\infty}\right) \leq 2 p^{n}-r \cdot \operatorname{ord}_{p}(2)
$$

where $0 \leq r \leq \frac{p-1}{\operatorname{ord}_{p}(2)}$. Furthermore, the linear complexity
$L\left(\tilde{s}^{\infty}\right)= \begin{cases}2 p^{n}-3(p-1) / 2 & \text { if } v=f ; \\ 2 p^{n}, & \text { if } v \left\lvert\, \frac{f}{2}\right., \text { or } v=2, v \neq f .\end{cases}$
Corollary 2 Let $f=2^{r}$. Then:
(i) The linear complexity of $s^{\infty}$ is given by

$$
L\left(s^{\infty}\right)= \begin{cases}2 p^{n}-p+1, & \text { if } v=f / 2 \\ 2 p^{n}, & \text { otherwise }\end{cases}
$$

(ii) The linear complexity of $\widetilde{s}^{\infty}$ is given by

$$
L\left(\tilde{s}^{\infty}\right)= \begin{cases}2 p^{n}-3(p-1) / 2, & \text { if } v=f \\ 2 p^{n}, & \text { otherwise }\end{cases}
$$

Remark 3 Suppose $2 \equiv g^{u}(\bmod p)$ for some integer $u$. It is easily seen that $\operatorname{gcd}\left(\frac{p-1}{\operatorname{ord}_{p}(2)}, f\right)=$ $\operatorname{gcd}(u, f)$. Thus the condition $2^{e} \equiv 1(\bmod p)$ in Conjecture from [6] is equivalent to $v=$ $\operatorname{gcd}\left(\frac{p-1}{\operatorname{ord}_{p}(2)}, f\right)=f$ and the condition $2^{e} \equiv-1$ $(\bmod p)$ is equivalent to $v=f / 2$. In the case that $f=2^{r}$ for a positive integer $r$, the integer $v$ is also a power of 2 , which either equals $f$ or $f / 2$ or divides $f / 4$. Hence Conjecture from [6] is included in Theorem 1 as a special case. Here we make the correction of Conjecture (ii).

If 2 is a primitive roots modulo $p$ then $v=1$.
For the proof of Theorem 1 we will use the same definitions and same method that as [4].

Let $S(x)=s_{0}+s_{1} x+\cdots+s_{2 p^{n}-1} x^{2 p^{n}-1}$ and $\widetilde{S}(x)=\widetilde{s}_{0}+\widetilde{s}_{1} x+\cdots+\widetilde{s}_{2 p^{n}-1} x^{2 p^{n}-1}$ for the generalized cyclotomic sequences $s^{\infty}, \widetilde{s}^{\infty}$ defined in (3) and (4), respectivly. Then,

$$
\begin{equation*}
S(x)=\sum_{t \in \mathcal{C}_{1}^{\left(p^{n}\right)}} x^{t} \text { and } \widetilde{S}(x)=\sum_{t \in \widetilde{\mathcal{C}}_{1}^{\left(p^{n}\right)}} x^{t} \tag{5}
\end{equation*}
$$

For simplicity of presentation, we define polynomials as in [4]

$$
\begin{equation*}
E_{i}^{\left(p^{j}\right)}(x)=\sum_{t \in D_{i}^{\left(p^{j}\right)}} x^{t}, \quad 1 \leq j \leq n, 0 \leq i<d_{j} \tag{6}
\end{equation*}
$$

and
$H_{k}^{\left(p^{j}\right)}(x)=\sum_{i=0}^{d_{j} / 2-1} E_{i+k}^{\left(p^{j}\right)}\left(\bmod d_{j}\right)(x), \quad 0 \leq k<d_{j}$,
$T_{k}^{\left(p^{m}\right)}(x)=\sum_{j=1}^{m} H_{k}^{\left(p^{j}\right)}\left(x^{p^{m-j}}\right), \quad m=1,2, \cdots, n$.

Notice that the subscripts $i$ in $D_{i}^{\left(p^{j}\right)}, H_{i}^{\left(p^{j}\right)}(x)$ and $T_{i}^{\left(p^{j}\right)}(x)$ are all taken modulo the order $d_{j}$. In the rest of this paper the modulo operation will be omitted when no confusion can arise.

Let $\overline{\mathbb{F}}_{2}$ be an algebraic closure of $\mathbb{F}_{2}$ and $\alpha_{n} \in$ $\overline{\mathbb{F}}_{2}$ be a primitive $p^{n}$-th root of unity. Denote $\alpha_{j}=$ $\alpha_{n}^{p^{n-j}}, j=1,2 \ldots, n-1$.

The properties of considered polynomials were studied in [4]. We have here the following statement.
Lemma 4 [4] For any $a \in D_{k}^{\left(p^{j}\right)}$, we have
(i) $T_{i}^{\left(p^{m}\right)}\left(\alpha_{m}^{p^{l} a}\right)=T_{i+k}^{\left(p^{m-l}\right)}\left(\alpha_{m-l}\right)+\left(p^{l}-1\right) / 2$ $(\bmod 2)$ for $0 \leq l<m$; and
(ii) $T_{i}^{\left(p^{m}\right)}\left(\alpha_{m}^{a}\right)+T_{i+d_{m} / 2}^{\left(p^{m}\right)}\left(\alpha_{m}^{a}\right)=1$.
(iii) Let $p$ be a non-Wieferich prime. Then $T_{i}^{\left(p^{m}\right)}\left(\alpha_{m}\right) \notin\{0,1\}$ for $m>1$.
(iv) Let $p$ be a non-Wieferich prime. Then $T_{i}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+T_{i+f / 2}^{\left(p^{m}\right)}\left(\alpha_{m}\right) \neq 1$ for $m>1$.

Throughout this paper an integer $u$ will be such that $2 \equiv g^{u}\left(\bmod p^{n}\right)$. Now we will show that the studying of linear complexity of above sequences is equivalent to the investigation of properties of $T_{i}^{\left(p^{m}\right)}(x)$

Proposition 5 Let $\alpha_{n}$ be a $p^{n}$-th primitive root of unity and let $2 \equiv g^{u}\left(\bmod p^{n}\right)$. Given any element $a \in \mathbb{Z}_{p^{n}}$, we have
(i) $S\left(\alpha_{n}^{a}\right)=1+T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)+T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)$; and
(ii) $S\left(\alpha_{n}^{a}\right)=T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)+T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)$.

Proof: (i) Since $\quad \sum_{t \in p^{n-j} D_{(i+b)}^{\left(2 p^{j}\right)}} \alpha^{a t}=$ $\sum_{t \in p^{n-j} D_{(i+b)}^{\left(p^{j}\right)}} \alpha^{a t}$ by (1), it follows from our definitions and Lemma 4 that

$$
S\left(\alpha_{n}^{a}\right)=1+T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)+T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)
$$

(ii) Similarly we have

$$
\widetilde{S}\left(\alpha_{n}^{a}\right)=T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)+T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{a}\right)
$$

We now examine the value of $T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)+$ $T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)$ for some integers $i \in \mathbb{Z}_{p^{n}}$.

Proposition 6 Let $p$ be a non-Wieferich prime. Then $S\left(\alpha_{n}^{i}\right) \neq 0$ and $\widetilde{S}\left(\alpha_{n}^{a}\right) \neq 0$ for $i \in \mathbb{Z}_{p^{n}} \backslash p^{n-1} \mathbb{Z}_{p}$.

Proof: This is sufficient to prove that $T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)+$ $T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right) \notin\{0,1\}$ for $i \in \mathbb{Z}_{p^{n}} \backslash p^{n-1} \mathbb{Z}_{p}$ and $b=$ $0,1, \cdots, d_{n}-1$. As it was shown in [4] that without loss of generality it is enough proof, $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+$ $T_{u}^{\left(p^{m}\right)}\left(\alpha_{m}\right) \notin\{0,1\}$ for $m>1$.

We consider two cases.

1. Let $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+T_{u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=0$. Since $\left(T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)\right)^{2}=T_{u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=0$, we see that in this case $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right) \in\{0,1\}$. We obtain a contradiction with Lemma 4 (iii).
2. Let $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+T_{u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=1$.

It then follows from Lemma 4 (i) that $T_{i u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+T_{(i+1) u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=1$ for any integer $i \geq 1$. Hence $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=T_{2 i u}^{\left(p^{m}\right)}\left(\alpha_{m}\right)$.

Denote $w=\operatorname{gcd}\left(2 u, d_{m}\right)$. Since $p$ is a nonWieferich prime, it follows by [4] that $w$ divides $f$. Since the subscript of $T_{i}^{\left(p^{m}\right)}(x)$ is taken modulo $d_{m}$, it is easily seen that

$$
\begin{equation*}
T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=T_{i w}^{\left(p^{m}\right)}\left(\alpha_{m}\right), \quad \text { for any integer } i \geq 1 \tag{8}
\end{equation*}
$$

By Lemma 4 (ii) from the last formula we have $T_{d_{m} / 2}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=T_{d_{m} / 2+i w}^{\left(p^{m}\right)}\left(\alpha_{m}\right)$ or $T_{d_{m}}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=$ $T_{d_{m} / 2+j f}^{\left(p^{m}\right)}\left(\alpha_{m}\right)$. Then we get that $T_{d_{m} / 2}^{\left(p^{m}\right)}\left(\alpha_{m}\right)=$ $T_{f / 2}^{\left(p^{m}\right)}\left(\alpha_{m}\right)$. Thus, by Lemma 4 (ii) we obtain that $T_{0}^{\left(p^{m}\right)}\left(\alpha_{m}\right)+1=T_{f / 2}^{\left(p^{m}\right)}\left(\alpha_{m}\right)$. But the latest equality is not possible for $m>1$ by Lemma 4 (iv).

By Proposition 6, we only need to study the value of $T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)+T_{b+u}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)$ for integers $i$ in the set $p^{n-1} \mathbb{Z}_{p}$. Suppose $i=p^{n-1} a, \quad a \in D_{i}^{(p)}$. Then, it follows from Proposition 5 and Lemma 4 that

$$
S\left(\alpha_{n}^{i}\right)=1+H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)
$$

where $k \equiv b+i(\bmod f)$. The following proposition examines the value of $H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)$ according to the relation between $f$ and $\operatorname{ord}_{p}(2)$.

Proposition 7 Let $p=e f+1$ be an odd prime with $f$ being an even positive integer and $v=$ $\operatorname{gcd}\left(\frac{p-1}{\operatorname{ord}_{p}(2)}, f\right)$. Then,
(i) $\left|\left\{k \in \mathbb{Z}_{f} \mid H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)=0\right\}\right|=$ $\begin{cases}f, & \text { if } v=f, \\ 0, & \text { if } v \mid f / 2 \text { or } v=2, v \neq f .\end{cases}$
(ii) $\left|\left\{k \in \mathbb{Z}_{f} \mid H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)=1\right\}\right|=$
$\begin{cases}f, & \text { if } v=f / 2, \\ 0, & \text { if } v=1, \text { or } v=f \text { or } 2 v \mid f / 2 .\end{cases}$
Proof: Since $\operatorname{ord}_{p}(2)=\frac{p-1}{\operatorname{gcd}(p-1, u)}$, it follows that $\operatorname{gcd}(u, f)=\operatorname{gcd}\left(\frac{(p-1)}{\operatorname{ord}_{p}(2)}, f\right)=v[4]$.
(i) For $v=f$ this statement is clear.

Let $v \mid f / 2$ or $v=2, v \neq f . \quad$ We shall prove this case by contradiction. Suppose $H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)=0$ for some integer $k$. Since $\left(H_{k}^{(p)}\left(\alpha_{1}\right)\right)^{2}=H_{k+u}^{(p)}\left(\alpha_{1}\right)$, it follows that $\left.H_{k}^{(p)}\left(\alpha_{1}\right)\right) \in\{0,1\}$. By [4] this is not possible for $v \mid f / 2$ or $v=2, v \neq f$.
(ii) For $v=f / 2$ this statement is clear. If $v=f$ then $2 \in D_{0}^{(p)}$ and we have $H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k}^{(p)}\left(\alpha_{1}\right)=1$. This is impossible

Suppose $H_{k}^{(p)}\left(\alpha_{1}\right)+H_{k+u}^{(p)}\left(\alpha_{1}\right)=1$ for some integer $k$. Without loss of generality, we assume $k=0$ and $H_{0}^{(p)}\left(\alpha_{1}\right)=H_{u}^{(p)}\left(\alpha_{1}\right)+1$.

In the case when $v \neq f$. Since $\operatorname{gcd}(u, f)=$ $\operatorname{gcd}\left(\frac{(p-1)}{\operatorname{ord}_{p}(2)}, f\right)=v$, by a similar argument as in the proof of Proposition 6 we get

$$
H_{0}^{(p)}\left(\alpha_{1}\right)=H_{2 v}^{(p)}\left(\alpha_{1}\right)=\cdots=H_{2 v i}^{(p)}\left(\alpha_{1}\right)
$$

So, if $2 v$ divides $f / 2$, then $H_{f / 2}^{(p)}\left(\alpha_{1}\right)=$ $H_{2 v \cdot f / 4 v}^{(p)}\left(\alpha_{1}\right)=H_{0}^{(p)}\left(\alpha_{1}\right)$, which is a contradiction.

Let $v=1$. Then we get $H_{i}^{(p)}\left(\alpha_{1}\right)+H_{i+1}^{(p)}\left(\alpha_{1}\right)+$ $1=0, i=0,1, \ldots, f-1$ and then $E_{i}^{(p)}\left(\alpha_{1}\right)+$ $E_{i+f / 2}^{(p)}\left(\alpha_{1}\right)+1=0, \quad i=0,1, \ldots, f-1$. In [4] it was shown that this is impossible.
Proof of Theorem 1. Recall that the linear complexity of $s^{\infty}$ is given by

$$
L\left(s^{\infty}\right)=N-\operatorname{deg}\left(\operatorname{gcd}\left(\left(x^{p^{n}}-1\right)^{2}, S(x)\right)\right)
$$

(i) From Proposition 6 we know $S\left(\alpha_{n}^{i}\right) \neq 0$ for $i \in$ $\mathbb{Z}_{p^{n}} \backslash p^{n-1} \mathbb{Z}_{p}$. For the remaining set $p^{n-1} \mathbb{Z}_{p}$, if $i=0$, then $S(1)=1$; if $i \in p^{n-1} \mathbb{Z}_{p}^{*}$, we have

$$
S\left(\alpha_{n}^{i}\right)=1+H_{b}^{(p)}\left(\alpha_{1}^{a}\right)+H_{b+u}^{(p)}\left(\alpha_{1}^{a}\right)
$$

for some integer $a \in \mathbb{Z}_{p}^{*}$.
Suppose $H_{k}^{(p)}\left(\alpha_{1}^{a}\right)+H_{k+u}^{(p)}\left(\alpha_{1}^{a}\right)=1$ for some integer $k$. Then
$1=\left(H_{k}^{(p)}\left(\alpha_{1}\right)\right)^{2}+H_{k+u}^{(p)}\left(\alpha_{1}^{2}\right)=H_{k+u}^{(p)}\left(\alpha_{1}\right)+H_{k+2 u}^{(p)}\left(\alpha_{1}\right)$,
and so on $($ here $u \not \equiv 0(\bmod f))$ ). So, we have
$\left|\left\{i: \quad S\left(\alpha_{n}^{i}\right)=0, i=1,2, \ldots, p^{n}-1\right\}\right|=r \operatorname{ord}_{p}(2)$.
where $r$ is an integer with $0 \leq r \leq \frac{p-1}{\operatorname{ord}_{p}(2)}$.
Further, by (5) we see that

$$
x S^{\prime}(x)=\sum_{j=1}^{n} \sum_{i=0}^{d_{j} / 2-1} \sum_{t \in D_{i+b}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)} x^{p^{n-j} t}
$$

Hence, $\alpha_{n}^{i} S\left(\alpha_{n}^{i}\right)=T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)$. So, if $\alpha_{n}^{i}$ is a root of $S(x)$ and $S^{\prime}(x)$ then $1+T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)+$ $\left(T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)\right)^{2}=0$ and $T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)=0$. It is not possible and any root of $S(x)$ is simple.

Then the statement of this theorem follows from Proposition 6.
(ii) In this case

$$
S\left(\alpha_{n}^{i}\right)=H_{b}^{(p)}\left(\alpha_{1}^{a}\right)+H_{b+u}^{(p)}\left(\alpha_{1}^{a}\right)
$$

for some integer $a \in \mathbb{Z}_{p}^{*}$.
Then as earlier we again get
$\left|\left\{i: S\left(\alpha_{n}^{i}\right)=0, i=1,2, \ldots, p^{n}-1\right\}\right|=r \operatorname{ord}_{p}(2)$.
where $r$ is an integer such that $0 \leq r \leq \frac{p-1}{\operatorname{ord}_{p}(2)}$.
Here, by (5) we see that

$$
x \widetilde{S}^{\prime}(x)=\sum_{j=1}^{n} \sum_{i=0}^{d_{j} / 2-1} \sum_{t \in D_{i+b}^{\left(2 p^{j}\right)}\left(\bmod d_{j}\right)} x^{p^{n-j} t}
$$

and also $\alpha_{n}^{i} \widetilde{S}\left(\alpha_{n}^{i}\right)=T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)$. If $v=f$ then it follows from [4] that
$\left|\left\{i: T_{b}^{\left(p^{n}\right)}\left(\alpha_{n}^{i}\right)=0, i=1,2, \ldots, p^{n}-1\right\}\right|=(p-1) / 2$.
Then the statement of this theorem follows from Proposition 6.

Acknowledgements: The reported study was funded by RFBR and NSFC according to the research project No 19-55-53003.

## References:

[1] A. Akbary and S. Siavashi, The largest known Wieferich numbers, Integers 18-A3, 2018, pp. 1-6.
[2] T. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, North-Holland mathematical library. Elsevier 2004.
[3] F.G. Dorais and D. Klyve, A Wieferich prime search up to $6.7 \times 10^{15}$, Journal of Integer Sequences, 14(11.9.2),2011, pp. 1-14.
[4] V. Edemskiy, C. Li, X. Zeng and T. Helleseth, The linear complexity of generalized cyclotomic binary sequences of period $p^{n}$, Des. Codes Cryptography, pp. 1-15. //DOI: 10.1007/s10623-018-0513-2
[5] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, Springer 1990.
[6] Y. Ouyang and X. Xie, Linear complexity of generalized cyclotomic sequences of period $2 p^{m}$, arXiv:1808.08019v1 [cs.IT] 24 Aug 2018
[7] Z. Ye, P. Ke and C. Wu, A further study of the linear complexity of new binary cyclotomic sequence of length $p^{n}$. AAECC ,2018, https://doi.org/10.1007/s00200-018-0368-9
[8] X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length. IEEE Transactions on Information Theory, 59(5), 2013, pp. 3237-3248 (2013).
[9] Z. Xiao, X. Zeng, C. Li and T. Helleseth, New generalized cyclotomic binary sequences of period $p^{2}$. Des. Codes Cryptography, 86(7), 2018, pp. 1483-1497.

